Telegram Group & Telegram Channel
Зачем нужно масштабирование признаков? Как бы вы его провели?

Допустим, у нас есть линейная регрессия с двумя независимыми переменными, у которых совершенно разный масштаб. Например, значения одного признака находятся в диапазоне от 0 до 100, а второго — от 0 до 1. Чтобы подстроиться под такие признаки, модель подберёт коэффициенты так, что первый будет небольшим, а второй — большим.

Проблема тут возникает на этапе обучения. Дело в том, что скорость оптимизации таких коэффициентов не будет одинаковой: ведь при градиентном спуске мы найдём две частные производные и подберём единый для обеих производных коэффициент скорости обучения. В результате, на каждой итерации мы будем получать различающиеся значения градиента для разных направлений.

Есть несколько способов масштабирования:
▫️Нормализация.
В данном случае все значения будут находиться в диапазоне от 0 до 1.
▫️Стандартизация.
Масштабирует значения с учётом стандартного отклонения.

Для нормализации, например, можно использовать метод MinMaxScaler из scikit-learn. Для стандартизации в этой же библиотеке есть метод StandardScaler.

#машинное_обучение



tg-me.com/ds_interview_lib/280
Create:
Last Update:

Зачем нужно масштабирование признаков? Как бы вы его провели?

Допустим, у нас есть линейная регрессия с двумя независимыми переменными, у которых совершенно разный масштаб. Например, значения одного признака находятся в диапазоне от 0 до 100, а второго — от 0 до 1. Чтобы подстроиться под такие признаки, модель подберёт коэффициенты так, что первый будет небольшим, а второй — большим.

Проблема тут возникает на этапе обучения. Дело в том, что скорость оптимизации таких коэффициентов не будет одинаковой: ведь при градиентном спуске мы найдём две частные производные и подберём единый для обеих производных коэффициент скорости обучения. В результате, на каждой итерации мы будем получать различающиеся значения градиента для разных направлений.

Есть несколько способов масштабирования:
▫️Нормализация.
В данном случае все значения будут находиться в диапазоне от 0 до 1.
▫️Стандартизация.
Масштабирует значения с учётом стандартного отклонения.

Для нормализации, например, можно использовать метод MinMaxScaler из scikit-learn. Для стандартизации в этой же библиотеке есть метод StandardScaler.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/280

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

Библиотека собеса по Data Science | вопросы с собеседований from kr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA